On prefixal one-rule string rewrite systems
نویسندگان
چکیده
منابع مشابه
On Termination of One Rule Rewrite Systems
The undecidability of the termination of rewrite systems is usually proved by reduction to the halting of Turing machines. In particular, Dauchet proves the unde-cidability of the termination of one rule rewrite systems by coding Turing machines into one rule rewrite systems. Rewrite systems are a very simple model of computation and one may expect proofs in this model to be more straightforwar...
متن کاملDAN-based string rewrite computational systems
We describe a DNA computing system called programmed mutagenesis. prove that it is universal, and present experimental results from a prototype computation. DNA is a material with important characteristics, such as possessing all the information necessary for self-reproduction in the presence of appropriate enzymes and components, simple natural evolution mechanism, and miniature scale, all of ...
متن کاملRewrite Rule Systems for Modal Propositional Logic
D This paper explains new results relating modal propositional logic and rewrite rule systems. More precisely, we give complete term rewriting systems for the modal propositional systems known as K, Q, T, and S5. These systems are presented as extensions of Hsiang’s system for classical propositional calculus. We have checked local confluence with the rewrite rule system K.B. (cf. the Knuth-Ben...
متن کاملOn One-Rule Grid Semi-Thue Systems
The family of one-rule grid semi-Thue systems, introduced by Alfons Geser, is the family of one-rule semi-Thue systems such that there exists a letter c that occurs as often in the left-hand side as the right-hand side of the rewriting rule. We prove that for any one-rule grid semi-Thue system S, the set S(w) of all words obtainable from w using repeatedly the rewriting rule of S is a construct...
متن کاملLoops of Superexponential Lengths in One-Rule String Rewriting
Abstract. Loops are the most frequent cause of non-termination in string rewriting. In the general case, non-terminating, non-looping string rewriting systems exist, and the uniform termination problem is undecidable. For rewriting with only one string rewriting rule, it is unknown whether non-terminating, non-looping systems exist and whether uniform termination is decidable. If in the one-rul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2019
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2019.07.004